1/10

2000 Q13

- 13. In triangle CAT, we have $\angle ACT = \angle ATC$ and $\angle CAT = 36^{\circ}$, If \overline{TR} bisects $\angle ATC$, then $\angle CRT =$

- **(A)** 16° **(B)** 51° **(C)** 72° **(D)** 90° **(E)** 108°

13. Answer (C): Since $\angle ACT = \angle ATC$ and $\angle CAT = 36^{\circ}$, we have $2(\angle ATC) =$ $180^{\circ} - 36^{\circ} = 144^{\circ}$ and $\angle ATC = \angle ACT = 72^{\circ}$. Because \overline{TR} bisects $\angle ATC$, $\angle CTR = \frac{1}{2}(72^{\circ}) = 36^{\circ}$. In triangle CRT, $\angle CRT = 180^{\circ} - 36^{\circ} - 72^{\circ} = 72^{\circ}$. Note that some texts use $\angle ACT$ to define the angle and $m \angle ACT$ to indicate its measure.

2/10

1999 Q21

- 21. The degree measure of angle A is
 - (A) 20
- **(B)** 30
- **(C)** 35
- **(D)** 40
- **(E)** 45

21. **Answer (B):** Since $\angle 1$ forms a straight line with angle 100° , $\angle 1 = 80^{\circ}$. Since $\angle 2$ forms a straight line with angle 110° , $\angle 2 = 70^{\circ}$. Angle 3 is the third angle in a triangle with $\angle E = 40^{\circ}$ and $\angle 2 = A < 70^{\circ}$, so $\angle 3 = 180^{\circ} - 40^{\circ} - 70^{\circ} = 70^{\circ}$. Angle $4 = 110^{\circ}$ since it forms a straight angle with $\angle 3$. Then $\angle 5$ forms a straight angle with $\angle 4$, so $\angle 5 = 70^{\circ}$. (Or $\angle 3 = \angle 5$ because they are vertical angles.) Therefore, $\angle A = 180^{\circ} - \angle 1 - \angle 5 = 180^{\circ} - 80^{\circ} - 70^{\circ} = 30^{\circ}$.

OR

The angle sum in $\triangle CEF$ is 180° , so $\angle C = 180^{\circ} - 40^{\circ} - 100^{\circ} = 40^{\circ}$. In $\triangle ACG$, $\angle G = 110^{\circ}$ and $\angle C = 40^{\circ}$, so $\angle A = 180^{\circ} - 110^{\circ} - 40^{\circ} = 30^{\circ}$.

3 / 10

1996 Q22

22. The horizontal and vertical distances between adjacent points equal 1 unit. The area of triangle ABC is

- **(A)** 1/4
- **(B)** 1/2
- (C) 3/4

- **(D)** 1
- **(E)** 5/4

22. (B) From the total area of 12, subtract the areas of the four surrounding polygons whose areas are indicated in the diagram. Thus the area of the remaining triangle ABC is

$$12 - 6 - 3 - 0.5 - 2 = 0.5 = 1/2$$
.

Note. Points whose coordinates are integers are called lattice points. According to Pick's Theorem, if there are I lattice points in the interior of a triangle and B lattice points on the boundary, then the area of the triangle is I + B/2 - 1. In this problem, I = 0 and B = 3. Therefore the area of the triangle is 0 + 3/2 - 1 = 1/2.

4 / 10

1999 Q23

23. Square ABCD has sides of length 3. Segments CMand CN divide the square's area into three equal part. How long is segment CM?

- **(C)** $\sqrt{13}$
- **(D)** $\sqrt{14}$ **(E)** $\sqrt{15}$

23. **Answer (C):** One-third of the square's area is 3, so triangle MBC has area $3 = \frac{1}{2}(MB)(BC)$. Since side BC is 3, side MB must be 2. The hypotenuse CMof this right triangle is $\sqrt{2^2 + 3^2} = \sqrt{13}$.

5 / 10

2001 Q23

23. Points R, S and T are vertices of an equilateral triangle, and points X, Y and Z are midpoints of its sides. How many noncongruent triangles can be drawn using any three of these six points as vertices?

- (A) 1
- (B) 2 (C) 3 (D) 4
- (E) 20

23. (D) There are four noncongruent triangles.

The seventeen possible triangles may be divided into four congruence classes: {RST}; {RXY, XTZ, YZS, XYZ}; {RXS, TXS, RZS, RZT, TYR, TYS}; {RXZ, RYZ, TXY, TZY, XYS, XZS}

6/10

2008 Q23

23. In square ABCE, AF = 2FE and CD = 2DE. What is the ratio of the area of $\triangle BFD$ to the area of square ABCE?

- (A) $\frac{1}{6}$ (B) $\frac{2}{9}$ (C) $\frac{5}{18}$ (D) $\frac{1}{3}$ (E) $\frac{7}{20}$

 $1 = \frac{1}{2}$ square units. The area of $\triangle BFD$ is equal to the area of the square minus the areas of the three right triangles: $9 - (3 + 3 + \frac{1}{2}) = \frac{5}{2}$. So the ratio of the area of $\triangle BFD$ to the area of square ABCE is $\frac{5}{2} = \frac{5}{18}$.

7 / 10

1996 Q24

- 24. The measure of angle ABC is 50° , \overline{AD} bisects angle BAC, and \overline{DC} bisects angle BCA. The measure of angle ADC is
 - (A) 90°
- (B) 100°
- (C) 115°

- (**D**) 122.5°
- **(E)** 125°

24. (C) Since the sum of the measures of the angles of a triangle is 180°, in triangle ABC it follows that

$$\angle BAC + \angle BCA = 180^{\circ} - 50^{\circ} = 130^{\circ}.$$

The measures of angles DAC and DCA are half that of angles BAC and BCA, respectively, so

$$\angle DAC + \angle DCA = \frac{130^{\circ}}{2} = 65^{\circ}.$$

In triangle ACD, we have $\angle ADC = 180^{\circ} - 65^{\circ} = 115^{\circ}$.

2000 Q24

- 24. If $\angle A = 20^{\circ}$ and $\angle AFG = \angle AGF$, Then $\angle B + \angle D =$
 - **(A)** 48°

- **(B)** 60° **(C)** 72° **(D)** 80°
- **(E)** 90°

24. **Answer (D):** Since $\angle AFG = \angle AGF$ and $\angle GAF + \angle AFG +$ $\angle AGF = 180^{\circ}$, we have $20^{\circ} + 2(\angle AFG) = 180^{\circ}$. So $\angle AFG =$ 80°. Also, $\angle AFG + \angle BFD = 190^{\circ}$, so $\angle BFD = 100^{\circ}$. The sum of the angles of $\triangle BFD$ is 180° , so $\angle B + \angle D = 80^{\circ}$.

Note: In $\triangle AFG$, $\angle AFG = \angle B + \angle D$. In general, an exterior angle of a triangle equals the sum of its remote interior angles. For example, in $\triangle GAF$, $\angle x = \angle GAF + \angle AGF$.

Note that, as in Problem 13, some texts use different symbols to represent an angle and its degree measure.

9/10

2004 Q24

24. In the figure, ABCD is a rectangle and EFGH is a parallelogram. Using the measurements given in the figure, what is the length d of the segment that is perpendicular to \overline{HE} and \overline{FG} ?

- **(A)** 6.8
- **(B)** 7.1
- (C) 7.6
- **(D)** 7.8
- **(E)** 8.1

24. **(C)** By the Pythagorean Theorem, HE = 5. Rectangle ABCD has area $10 \times 8 = 80$, and the corner triangles have areas $\frac{1}{2} \times 3 \times 4 = 6$ and $\frac{1}{2} \times 6 \times 5 = 15$. So the area of EFGH is 80 - (2)(6) - (2)(15) = 38. Because the area of EFGH is $EH \times d$ and EH = 5, $38 = 5 \times d$, so d = 7.6.

10 / 10

2000 Q25

25. The area of rectangle ABCD is 72. If point A and the midpoints of \overline{BC} and \overline{CD} are joined to form a triangle, the area of that triangle is

(A) 21

(B) 27

(C) 30

(D) 36

(E) 40

25. **Answer (B):** Three right triangles lie outside $\triangle AMN$. A Their areas are $\frac{1}{4}$, $\frac{1}{4}$, and $\frac{1}{8}$ for a total of $\frac{5}{8}$ of the rectangle. The area of $\triangle AMN$ is $\frac{3}{8}(72) = 27$.

OR

Let the rectangle have sides of 2a and 2b so that 4ab = 72 and ab = 18. Three right triangles lie outside triangle AMN, and their areas are $\frac{1}{2}(2a)(b)$, $\frac{1}{2}(2b)(a)$, $\frac{1}{2}(a)(b)$, for a total of $\frac{5}{2}(ab) = \frac{5}{2}(18) = 45$. The area of triangle AMN is 72 - 45 = 27.