1/9

2002 Q16

16. Right isosceles triangles are constructed on the sides of a 3-4-5 right triangle, as shown. A capital letter represents the area of each triangle. Which one of the following is true?

- (A) X + Z = W + Y (B) W + X = Z (C) 3X + 4Y = 5Z (D) $X + W = \frac{1}{2}(Y + Z)$ (E) X + Y = Z

2/9

2011 Q16

16. Let A be the area of a triangle with sides of length 25, 25, and 30. Let B be the area of a triangle with sides of length 25, 25, and 40. What is the relationship between A and B?

$$\mathbf{(A)}\ A = \frac{9}{16}B$$

(A) $A = \frac{9}{16}B$ **(B)** $A = \frac{3}{4}B$ **(C)** A = B **(D)** $A = \frac{4}{3}B$ **(E)** $A = \frac{16}{9}B$

2017 Q16

16. In the figure shown below, choose point D on side \overline{BC} so that $\triangle ACD$ and $\triangle ABD$ have equal perimeters. What is the area of $\triangle ABD$?

- (A) $\frac{3}{4}$ (B) $\frac{3}{2}$ (C) 2

4/9

1992 Q17

- 17. The sides of a triangle have lengths 6.5, 10, and s, where s is a whole number. What is the smallest possible value of s?
 - (A) 3
- **(B)** 4
- (C) 5
- (D) 6
- (\mathbf{E}) 7

5/9

1993 Q18

18. The rectangle shown has length AC = 32, width AE = 20, and B and F are midpoints of \overline{AC} and \overline{AE} , respectively.

The area of the quadrilateral ABDF is

- (A) 320
- **(B)** 325
- (C) 330

- **(D)** 335
- **(E)** 340

6/9

2017 Q18

18. In the non-convex quadrilateral ABCD shown below, $\angle BCD$ is a right angle, AB = 12, BC = 4, CD = 3, and AD = 13.

What is the area of quadrilateral ABCD?

- **(A)** 12
- **(B)** 24
- **(C)** 26
- **(D)** 30
- **(E)** 36

7/9

2006 Q19

19. Triangle \overline{ABC} is an isosceles triangle with AB = BC. Point D is the midpoint of both \overline{BC} and \overline{AE} , and \overline{CE} is 11 units long. Triangle ABD is congruent to triangle ECD. What is the length of \overline{BD} ?

- **(A)** 4
- **(B)** 4.5
- **(C)** 5
- **(D)** 5.5
- **(E)** 6

2009 Q19

- 19. Two angles of an isosceles triangle measure 70° and x° . What is the sum of the three possible values of x?
 - (A) 95
- **(B)** 125 **(C)** 140
- **(D)** 165
- **(E)** 180

9/9

2002 Q20

20. The area of triangle XYZ is 8 square inches. Points A and B are midpoints of congruent segments \overline{XY} and \overline{XZ} . Altitude \overline{XC} bisects \overline{YZ} . The area (in square inches) of the shaded region is

- **(A)** $1\frac{1}{2}$
- **(B)** 2
- (C) $2\frac{1}{2}$
- **(D)** 3
- **(E)** $3\frac{1}{2}$