1/3

1988 Q11

11. $\sqrt{164}$ is

- A) 42
- B) less than 10 C) between 10 and 11
- D) between 11 and 12 E) between 12 and 13

 $10^2 = 100$, $11^2 = 121$, $12^2 = 144$, $13^2 = 169$ so (E) is correct. 11.

2/3

1991 Q13

13. How many zeros are at the end of the product

 $25 \times 25 \times 25 \times 25 \times 25 \times 25 \times 25 \times 8 \times 8 \times 8$?

- (A) 3 (B) 6 (C) 9 (D) 10 (E) 12

13. (C) Since $2 \times 5 = 10$, each zero at the end of the product comes from a product of 2 and 5 in the prime factorization of the number. Since $25 = 5 \times 5$ and $8 = 2 \times 2 \times 2$, it follows that there are fourteen factors of 5 and 9 factors of 2. This yields 9 pairs of 2 x 5 and results in 9 zeros at the end of the product.

OR

Multiplying the given numbers using a calculator gives an answer equivalent to 3.125×10^{12} which equals 3, 125, 000, 000, 000. This results in 9 zeros at the end of the product.

OR

Factoring each number yields

Pairing each factor of 2 with a factor of 5 yields $(2 \times 5)^9 \times 5^5 = 10^9 \times (\text{an odd})$ number). Thus the product ends in nine zeros.

OR

Since $25 \times 25 \times 8 = 25 \times 200 = 5000$, regrouping yields

$$(25 \times 25 \times 8) \times (25 \times 25 \times 8) \times (25 \times 25 \times 8) \times 25$$

= $5000 \times 5000 \times 5000 \times 25 = 125,000,000,000 \times 25 = 3,125,000,000,000$.

3/3

1996 Q15

- 15. The remainder when the product $1492 \cdot 1776 \cdot 1812 \cdot 1996$ is divided by 5 is
 - (\mathbf{A}) 0

- (B) 1 (C) 2 (D) 3
- $(\mathbf{E}) 4$