1985 Q6

- 6. A ream of paper containing 500 sheets is 5 cm thick. Approximately how many sheets of this type of paper would there be in a stack 7.5 cm high?
 - A) 250
- B) 550 C) 667 D) 750
- E) 1250

The 7.5 cm stack is "half again" as tall as the 5 cm stack, so 6. it will contain $500 + \frac{1}{2}(500) = 500 + 250 = 750$ sheets.

OR

If n is the number of sheets of paper in the 7.5 cm stack, then $\frac{5}{500} = \frac{7.5}{n}$. Thus n = 750 sheets.

2/13

1990 Q6

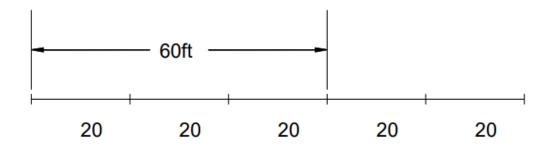
- 6. Which of these five numbers is the largest?
 - A) $13579 + \frac{1}{2468}$
- B) $13579 \frac{1}{2468}$ C) $13579 \times \frac{1}{2468}$
- D) $13579 \div \frac{1}{2468}$
- E) 13579.2468

6. D All of the choices, except (C) and (D), are near 13,579. In (D), the result is the product (13579)(2468) while in (C) the result is much less than 13,579.

3 / 13

1997 Q6

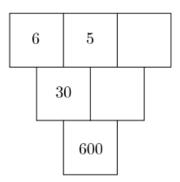
- 6. In the number 74982.1035 the value of the *place* occupied by the digit 9 is how many times as great as the value of the *place* occupied by the digit 3?
 - (A) 1,000 (B) 10,000 (C) 100,000 (D) 1,000,000 (E) 10,000,000


(C) Each shift of one place represents a multiple of 10: 1 4 8 2 0 3 5 9 1 0.1 0.01 0.001 100 10 Five shifts are needed and $10 \times 10 \times 10 \times 10 \times 10 = 10^5 = 100000$

4/13

2001 Q6

- 6. Six trees are equally spaced along one side of a straight road. The distance from the first tree to the fourth is 60 feet. What is the distance in feet between the first and last trees?
 - (A) 90
- (B) 100
- (C) 105
- (D) 120
- (E) 140


6. (B) There are three spaces between the first tree and the fourth tree, so the distance between adjacent trees is 20 feet. There are 6 trees with five of these 20-foot spaces, so the distance between the first and last trees is 100 feet.

5 / 13

2013 Q6

6. The number in each box below is the product of the numbers in the two boxes that touch it in the row above. For example, $30 = 6 \times 5$. What is the missing number in the top row?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

6. **Answer** (**C**): The product of the two numbers in the second row is 600, so the missing number in that row is $\frac{600}{30} = 20$. The product of 5 with the missing number in the top row is 20, so the missing number in the top row is $\frac{20}{5} = 4$.

6 / 13

- 7. 2.46 x 8.163 x (5.17 + 4.829) is closest to
- A) 100
- B) 200
- C) 300
- D) 400
- E) 500

1988 Q7

7. The product is approximately (2.5)(8)(10) = (20)(10) = 200. B

7 / 13

1992 Q7

- 7. The digit-sum of 998 is 9+9+8=26. How many 3-digit whole numbers, whose digit-sum is 26, are even?
 - (A) 1
- (B) 2 (C) 3
- (D) 4
- (\mathbf{E}) 5

7. (A) The only 3-digit whole numbers with a digit-sum of 26 are 899, 989 and 998. Of these, only 998 is even. Thus there is only one such number.

1993 Q7

7.
$$3^3 + 3^3 + 3^3 =$$
(A) 3^4 (B) 9^3 (C) 3^9 (D) 27^3 (E) 3^{27}

7. (A) $3^3 + 3^3 + 3^3 = 3(3^3) = 3(3 \times 3 \times 3) = 3 \times 3 \times 3 \times 3 = 3^4$.

OR.

$$3^3 + 3^3 + 3^3 = 27 + 27 + 27 = 81 = 9 \times 9 = 3 \times 3 \times 3 \times 3 = 3^4$$
.

9 / 13

1998 Q7

7.
$$100 \times 19.98 \times 1.998 \times 1000 =$$

(A) $(1.998)^2$ **(B)** $(19.98)^2$ **(C)** $(199.8)^2$ **(D)** $(1998)^2$ **(E)** $(19980)^2$

7. **Answer (D):** Use the associative property to group as follows: $(100 \times 19.98) \times (1.998 \times 1000) = 1998 \times 1998 = (1998)^2$.

NUMBER Arithmetic 10 / 13

8. In the product shown, B is a digit. B2

**The value of B is **TB 6396*

1986 Q8

A) 3 B) 5 C) 6 D) 7 E) 8

8. (E) If B×2 ends in 6, then B is 3 or 8. Since the product exceeds 6000, B must be 8.

11 / 13

1988 Q8

- 8. Betty used a calculator to find the product 0.075 x 2.56. She forgot to enter the decimal points. The calculator showed 19200. If Betty had entered the decimal points correctly, the answer would have been
 - A) .0192 B) .192 C) 1.92 D) 19.2 E) 192

8. B Although one could solve this problem by counting decimal places in the product, it is more more insightful to realize that the answer is approximately .1(2) = .2, so (B) is correct.

1991 Q9

- 9. How many whole numbers from 1 through 46 are divisible by either 3 or 5 or both?
 - (A) 18
- **(B)** 21
- (C) 24
- **(D)** 25
- (E) 27

9. (B) A number is divisible by 3 if it is a multiple of 3, and it is divisible by 5 if it is a multiple of 5. There are 15 multiples of 3, and 9 multiples of 5 which are whole numbers less than 46. However, 3 numbers (15, 30 and 45) which are divisible by both 3 and 5 have been counted twice. Thus the total number which are divisible by either 3 or 5 or both is 15 + 9 - 3 = 21.

OR

Using the Sieve of Eratosthenes and marking each 3rd number, multiples of 3, and each 5th number, multiples of 5, yields

$$1, 2, \overline{|3|}, 4, \overline{|5|}, \overline{|6|}, 7, 8, \overline{|9|}, \overline{|10|}, 11, \dots, \overline{|45|}, 46.$$

Thus, the total number which are divisible by either 3 or 5 or both is 21.

13 / 13

10.
$$4(299) + 3(299) + 2(299) + 298 =$$

- A) 2889
- B) 2989
- C) 2991
- D) 2999
- E) 3009

1987 Q10

10. B The desired sum may be written as 299(4 + 3 + 2 + 1) - 1 =299(10) - 1 = 2990 - 1 = 2989.